Superstability and Stability of the Pexiderized Multiplicative Functional Equation
نویسندگان
چکیده
We obtain the superstability of the Pexiderized multiplicative functional equation fxy gxhy and investigate the stability of this equation in the following form: 1/1 ψx, y ≤ fxy/gxhy ≤ 1 ψx, y.
منابع مشابه
On the Superstability and Stability of the Pexiderized Exponential Equation
The main purpose of this paper is to establish some new results onthe superstability and stability via a fixed point approach forthe Pexiderized exponential equation, i.e.,$$|f(x+y)-g(x)h(y)|leq psi(x,y),$$where $f$, $g$ and $h$ are three functions from an arbitrarycommutative semigroup $S$ to an arbitrary unitary complex Banachalgebra and also $psi: S^{2}rightarrow [0,infty)$ is afunction. Fur...
متن کاملOn the stability of the Pexiderized cubic functional equation in multi-normed spaces
In this paper, we investigate the Hyers-Ulam stability of the orthogonally cubic equation and Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the $2$-variables cubic equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...
متن کاملSolutions and stability of variant of Van Vleck's and D'Alembert's functional equations
In this paper. (1) We determine the complex-valued solutions of the following variant of Van Vleck's functional equation $$int_{S}f(sigma(y)xt)dmu(t)-int_{S}f(xyt)dmu(t) = 2f(x)f(y), ;x,yin S,$$ where $S$ is a semigroup, $sigma$ is an involutive morphism of $S$, and $mu$ is a complex measure that is linear combinations of Dirac measures $(delta_{z_{i}})_{iin I}$, such that for all $iin I$, $z_{...
متن کاملOn the superstability of a special derivation
The aim of this paper is to show that under some mild conditions a functional equation of multiplicative $(alpha,beta)$-derivation is superstable on standard operator algebras. Furthermore, we prove that this generalized derivation can be a continuous and an inner $(alpha,beta)$-derivation.
متن کاملSuperstability of $m$-additive maps on complete non--Archimedean spaces
The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.
متن کامل